Network function virtualization (NFV) and software-defined network (SDN) have become emerging network paradigms, allowing virtualized network function (VNF) deployment at a low cost. Even though VNF deployment can be flexible, it is still challenging to optimize VNF deployment due to its high complexity. Several studies have approached the task as dynamic programming, e.g., integer linear programming (ILP). However, optimizing VNF deployment for highly complex networks remains a challenge. Alternatively, reinforcement learning (RL) based approaches have been proposed to optimize this task, especially to employ a scaling action-based method which can deploy VNFs within less computational time. However, the model architecture can be improved further to generalize to the different networking settings. In this paper, we propose an enhanced model which can be adapted to more general network settings. We adopt the improved GNN architecture and a few techniques to obtain a better node representation for the VNF deployment task. Furthermore, we apply a recently proposed RL method, phasic policy gradient (PPG), to leverage the shared representation of the service function chain (SFC) generation model from the value function. We evaluate the proposed method in various scenarios, achieving a better QoS with minimum resource utilization compared to the previous methods. Finally, as a qualitative evaluation, we analyze our proposed encoder's representation for the nodes, which shows a more disentangled representation.


翻译:网络功能虚拟化(NFV)和软件定义网络(SDN)已经成为新出现的网络模式,使得虚拟化网络功能(VNF)能够以低成本部署。尽管VNF的部署可以灵活,但由于其高度复杂,优化VNF的部署仍具有挑战性。一些研究将这项任务作为动态编程,例如整线编程(ILP)处理。然而,为高度复杂的网络优化VNF的部署仍是一个挑战。或者,为了优化这项工作,提出了基于强化学习(RL)的方法,特别是采用基于行动的方法,在较少计算时间内部署VNFS。然而,模型结构可以进一步改进,以便推广到不同的网络设置。在本文件中,我们提出了一个可以适应更一般网络设置的强化模式。我们采用了改进的GNNFS架构和一些技术,以便为VNFF的部署任务获得更好的节点代表。此外,我们最近提出的RL方法,即基于政策梯度(PPGGG),以利用服务链的共享代表制式(SC)模式,从以前的价值函数中实现更好的生成模式。我们最后评估了一种最起码的方法。我们用的方法来比较评估。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2022年4月13日
Arxiv
21+阅读 · 2022年2月24日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员