A seminal palette sparsification result of Assadi, Chen, and Khanna states that in every $n$-vertex graph of maximum degree $\Delta$, sampling $\Theta(\log n)$ colors per vertex from $\{1, \ldots, \Delta+1\}$ almost certainly allows for a proper coloring from the sampled colors. Alon and Assadi extended this work proving a similar result for $O\left(\Delta/\log \Delta\right)$-coloring triangle-free graphs. Apart from being interesting results from a combinatorial standpoint, their results have various applications to the design of graph coloring algorithms in different models of computation. In this work, we focus on locally sparse graphs, i.e., graphs with sparse neighborhoods. We say a graph $G = (V, E)$ is $k$-locally-sparse if for each vertex $v \in V$, the subgraph $G[N(v)]$ contains at most $k$ edges. A celebrated result of Alon, Krivelevich, and Sudakov shows that such graphs are $O(\Delta/\log (\Delta/\sqrt{k}))$-colorable. For any $\alpha \in (0, 1)$ and $k \ll \Delta^{2\alpha}$, let $G$ be a $k$-locally-sparse graph. For $q = \Theta\left(\Delta/\log \left(\Delta^\alpha/\sqrt{k}\right)\right)$, we show that sampling $O\left(\Delta^\alpha + \sqrt{\log n}\right)$ colors per vertex is sufficient to obtain a proper $q$-coloring of $G$ from the sampled colors. Setting $k = 1$ recovers the aforementioned result of Alon and Assadi for triangle-free graphs. A key element in our proof is a proposition regarding correspondence coloring in the so-called color-degree setting, which improves upon recent work of Anderson, Kuchukova, and the author and is of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员