We consider an inverse problem for a finite graph $(X,E)$ where we are given a subset of vertices $B\subset X$ and the distances $d_{(X,E)}(b_1,b_2)$ of all vertices $b_1,b_2\in B$. The distance of points $x_1,x_2\in X$ is defined as the minimal number of edges needed to connect two vertices, so all edges have length 1. The inverse problem is a discrete version of the boundary rigidity problem in Riemannian geometry or the inverse travel time problem in geophysics. We will show that this problem has unique solution under certain conditions and develop quantum computing methods to solve it. We prove the following uniqueness result: when $(X,E)$ is a tree and $B$ is the set of leaves of the tree, the graph $(X,E)$ can be uniquely determined in the class of all graphs having a fixed number of vertices. We present a quantum computing algorithm which produces a graph $(X,E)$, or one of those, which has a given number of vertices and the required distances between vertices in $B$. To this end we develop an algorithm that takes in a qubit representation of a graph and combine it with Grover's search algorithm. The algorithm can be implemented using only $O(|X|^2)$ qubits, the same order as the number of elements in the adjacency matrix of $(X,E)$. It also has a quadratic improvement in computational cost compared to standard classical algorithms. Finally, we consider applications in theory of computation, and show that a slight modification of the above inverse problem is NP-complete: all NP-problems can be reduced to a discrete inverse problem we consider.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月22日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员