Federated edge learning (FEEL) enables wireless devices to collaboratively train a centralised model without sharing raw data, but repeated uplink transmission of model updates makes communication the dominant bottleneck. Over-the-air (OTA) aggregation alleviates this by exploiting the superposition property of the wireless channel, enabling simultaneous transmission and merging communication with computation. Digital OTA schemes extend this principle by incorporating the robustness of conventional digital communication, but current designs remain limited in low signal-to-noise ratio (SNR) regimes. This work proposes a learned digital OTA framework that improves recovery accuracy, convergence behaviour, and robustness to challenging SNR conditions while maintaining the same uplink overhead as state-of-the-art methods. The design integrates an unsourced random access (URA) codebook with vector quantisation and AMP-DA-Net, an unrolled approximate message passing (AMP)-style decoder trained end-to-end with the digital codebook and parameter server local training statistics. The proposed design extends OTA aggregation beyond averaging to a broad class of symmetric functions, including trimmed means and majority-based rules. Experiments on highly heterogeneous device datasets and varying numbers of active devices show that the proposed design extends reliable digital OTA operation by more than 10 dB into low SNR regimes while matching or improving performance across the full SNR range. The learned decoder remains effective under message corruption and nonlinear aggregation, highlighting the broader potential of end-to-end learned design for digital OTA communication in FEEL.
翻译:联邦边缘学习(FEEL)使无线设备能够协作训练集中式模型而无需共享原始数据,但模型更新的重复上行链路传输使得通信成为主要瓶颈。空中(OTA)聚合通过利用无线信道的叠加特性缓解这一问题,实现同时传输并将通信与计算融合。数字OTA方案通过结合传统数字通信的鲁棒性扩展了这一原理,但现有设计在低信噪比(SNR)条件下仍存在局限。本文提出一种学习数字OTA框架,在保持与先进方法相同上行开销的同时,提高了恢复精度、收敛性能以及对挑战性SNR条件的鲁棒性。该设计将无源随机接入(URA)码本与矢量量化及AMP-DA-Net相结合——后者是一种展开式近似消息传递(AMP)型解码器,与数字码本及参数服务器本地训练统计数据端到端联合训练。所提设计将OTA聚合从均值计算扩展到包括截尾均值与基于多数的规则在内的广泛对称函数类。在高度异构设备数据集及不同活跃设备数量上的实验表明,所提设计将可靠数字OTA操作范围向低SNR区域扩展超过10 dB,同时在全SNR范围内达到或超越现有性能。学习解码器在消息损坏和非线性聚合条件下仍保持有效性,凸显了端到端学习设计在FEEL数字OTA通信中的广阔潜力。