Machine learning algorithms play an important role in a variety of important decision-making processes, including targeted advertisement displays, home loan approvals, and criminal behavior predictions. Given the far-reaching impact of these algorithms, it is crucial that they operate fairly, free from bias or prejudice towards certain groups in the population. Ensuring impartiality in these algorithms is essential for promoting equality and avoiding discrimination. To this end we introduce a unified framework for randomized subset selection that incorporates group fairness constraints. Our problem involves a global utility function and a set of group utility functions for each group, here a group refers to a group of individuals (e.g., people) sharing the same attributes (e.g., gender). Our aim is to generate a distribution across feasible subsets, specifying the selection probability of each feasible set, to maximize the global utility function while meeting a predetermined quota for each group utility function in expectation. Note that there may not necessarily be any direct connections between the global utility function and each group utility function. We demonstrate that this framework unifies and generalizes many significant applications in machine learning and operations research. Our algorithmic results either improves the best known result or provide the first approximation algorithms for new applications.


翻译:机器学习算法在包括定向广告展示、房屋贷款批准和犯罪行为预测等各种重要决策过程中都扮演着重要角色。鉴于这些算法的广泛影响,确保它们公平运行,不偏袒或偏见某些族群,至关重要。确保这些算法的公正性对于促进平等和避免歧视至关重要。为此,我们引入了一种统一的随机子集选择框架,该框架包括组公平性约束。我们的问题涉及全局效用函数和每个组的一组效用函数。这里的组指具有相同属性(例如性别)的个体(例如人)的一组。我们的目标是生成跨可行子集的分布,指定每个可行集合的选择概率,以最大化全局效用函数,同时满足预期每个组效用函数的预定配额。请注意,全局效用函数和每个组效用函数之间可能没有任何直接关联。我们证明了这个框架统一和概括了机器学习和运筹学中许多重要应用。我们的算法结果改进了已知的最佳结果或为新应用提供了第一近似算法。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员