题目: Algorithmic Decision Making with Conditional Fairness

摘要:

当前,公平问题已成为决策系统中备受关注的问题。人们提出了各种公平概念来衡量算法的不公平程度。在实践中,经常存在一组我们称为公平变量的变量,即用户的选择等决策前协变量。公平变量的影响与评价决策支持算法的公平性无关。因此,我们定义条件公平作为一个更健全的衡量公平的条件,对公平变量。鉴于对公平变量的不同先验知识,我们证明了传统的公平符号,如人口均等和均等概率,是我们的条件公平符号的特殊情况。此外,我们提出了一种可推导的条件公平性调节器(DCFR),该调节器可集成到任何决策模型中,以跟踪算法决策精度与公平性之间的权衡。具体地说,我们在DCFR中提出了一个基于条件独立性损失的对抗性表示来衡量不公平的程度。通过对三个真实数据集的广泛实验,我们证明了我们的条件公平性表示法和DCFR的优点。

成为VIP会员查看完整内容
0
7

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: Fairness-Aware Explainable Recommendation over Knowledge Graphs

简介: 最近,人们对公平性的考虑日益受到关注,尤其是在智能决策系统中。可解释的推荐系统可能会受到解释偏差和性能差异的困扰。在本文中,我们根据用户的活动水平分析了不同的用户组,发现不同组之间的推荐绩效存在偏差。结果显示由于不活跃用户的培训数据不足,不活跃用户可能更容易收到不满意的推荐,并且由于协作过滤的性质,他们的推荐可能会受到更活跃用户的培训记录的影响,因而受到系统的不公平对待。我们提出了一种启发式重新排序的公平约束方法,以在对知识图的可解释性推荐的背景下减轻这种不公平问题。我们使用基于最新知识图的可解释推荐算法对几个数据集进行了实验,结果表明,我们的算法不仅能够提供高质量的可解释的推荐,而且在几个方面都减少了推荐的不公平性。

成为VIP会员查看完整内容
0
16

题目: Review of Mathematical frameworks for Fairness in Machine Learning

摘要:

从数学的角度回顾了过去几年文献中提出的主要公平定义和公平学习方法。根据基于独立的方法,考虑如何构建公平的算法,以及与可能不公平的情况相比,算法性能下降的后果。这相当于公平的价格由标准统计均等或机会均等给出。给出了最优公平分类器和最优公平预测器(在线性回归高斯模型下)在机会均等意义下的新结果。

成为VIP会员查看完整内容
0
14

图表示学习近年来得到了广泛的研究。尽管它在为各种网络生成连续嵌入方面具有潜力,但针对大量节点推断高质量表示的有效性和效率仍然具有挑战性。采样是实现性能目标的关键。现有技术通常集中于正节点对的抽样,而对负节点对的抽样策略却没有进行充分的探索。为了弥补这一差距,我们从目标和风险两个角度系统地分析了负抽样的作用,从理论上论证了负抽样与正抽样在确定优化目标和由此产生的方差方面同样重要。据我们所知,我们是第一个推导出负抽样分布应该与正抽样分布呈正相关但亚线性相关的理论并进行量化的工作。在该理论的指导下,我们提出了MCNS,用自对比近似逼近正分布,用Metropolis-Hastings加速负抽样。我们在5个数据集上评估了我们的方法,这些数据集涵盖了广泛的下游图数据学习任务,包括链接预测、节点分类和个性化推荐,总共有19个实验设置。这些较为全面的实验结果证明了其鲁棒性和优越性。

成为VIP会员查看完整内容
0
31

题目: Decision-theoretic foundations for statistical causality

摘要:

我们为企业决策理论的统计因果关系(DT)建立了一个数学和解释基础,这是一种直接表达和解决因果问题的方法。DT将因果推理重新定义为“辅助决策”,目的是了解何时以及如何利用外部数据(通常是观察性的)来帮助解决决策问题,利用数据与我的问题之间假定的关系。

因果问题的任何表述中所包含的关系都需要更深层次的证明,这必然取决于上下文。在这里,我们澄清了支持DT方法应用所需要考虑的事项。互换性考虑被用来构建所需的关系,而意图治疗和干预治疗之间的区别形成了“可忽略性”启用条件的基础。我们还展示了DT的观点是如何统一和阐明统计因果关系的其他流行形式的,包括潜在的响应和有向无环图。

成为VIP会员查看完整内容
0
19

题目: Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice

摘要:

本文研究了无监督多类域自适应理论,这是最近一些算法的基础,这些算法的学习目标仅仅是由经验驱动的。多类得分不一致(MCSD)分歧是通过聚合多类分类中的绝对裕度违规来表示的;所提出的MCSD能够充分表征任何一对多类得分假设之间的关系。通过使用MCSD作为域距离的度量,我们为多类UDA开发了一个新的域适配边界以及它的依赖于数据的(可能是近似正确的)边界,这自然地提出了对抗性的学习目标来对齐源域和目标域的条件特征分布。因此,一个多类领域对抗学习网络(McDalNets)的算法框架被开发出来,它通过学习目标的不同实例与最近流行的一些方法相一致或相似,从而(部分地)强调了它们的实际有效性。在多类UDA理论的基础上,提出了一种新的域对称网络(SymmNets)算法。Symmnet提供了简单的扩展,这些扩展在封闭集、部分集或开放集UDA的问题设置下都可以很好地工作。我们进行了仔细的实证研究,把不同的算法的McDalNets和我们的新推出的SymmNets相比较。实验结果验证了理论分析的正确性和有效性。

成为VIP会员查看完整内容
0
17

题目: Weakly-Supervised Disentanglement Without Compromises

摘要:

智能体应该能够通过观察其环境中的变化来学习有用的表示。首先,从理论上证明,只知道有多少因素发生了变化,而不知道哪些因素发生了变化,就足以学习解缠表示。其次,我们提供了实用的算法,可以从成对的图像中学习分离的表示,而不需要对组、单个因素或已更改的因素的数量进行注释。第三,我们进行了大规模的实证研究,并表明这样的观测对足以可靠地学习几个基准数据集上的解缠表示。最后,我们评估我们的表示学习,并发现它们在不同的任务集合上同时是有用的,包括协变量转移下的泛化、公平性和抽象推理。总的来说,结果表明,在现实场景中,弱监督能够帮助学习有用的解缠表示。

成为VIP会员查看完整内容
0
13

题目

基于学习的序列决策算法的公平性综述论文,Fairness in Learning-Based Sequential Decision Algorithms: A Survey

关键字

序列决策,机器学习,预测,公平性

简介

决策过程中的算法公平性已经被广泛研究,在不稳定的环境下,对分类等任务进行一次性决策。然而,在实践中,大多数决策过程都是顺序的,过去的决策可能会对未来的数据产生影响。特别是当决策影响到生成用于未来决策的数据的个人或用户时。在这项调查中,我们回顾了现有文献的数据驱动顺序决策的公平性。我们将关注两类顺序决策:(1)过去的决策对潜在用户群没有影响,对未来数据也没有影响;(2)过去的决策对潜在用户群有影响,因此对未来数据也有影响,进而影响未来的决策。在每种情况下,都要研究各种公平干预措施对底层人口的影响。

作者

Xueru Zhang and Mingyan Liu

成为VIP会员查看完整内容
0
13

【导读】越来越明显的是,广泛采用的机器学习模型可能导致歧视性结果,并可能加剧训练数据之间的差异。随着越来越多的机器学习用于现实世界中的决策任务,必须解决机器学习中的偏见和公平问题。我们的动机是,在各种新兴方法中,表示学习为评估和潜在地减轻不公平现象提供了独特的工具集。本教程介绍了现有的研究,并提出了在表示学习和公平的交集中存在的开放性问题。我们将研究学习公平任务不可知表示的可能性(不可能性),公平性和泛化性能之间的联系,以及利用来自表示形式学习的工具来实现算法上的个人和群体公平性的机会。本教程旨在为广大的机器学习实践者提供帮助,并且必要的背景知识是预测性机器学习的工作知识。

作者介绍

Sanmi Koyejo,伊利诺伊大学香槟分校计算机科学系助理教授。

研究综述: 我们的研究兴趣是开发自适应鲁棒机器学习的原理和实践。最近的一些亮点包括:1)可伸缩的、分布式的和容错的机器学习;2)度量引出;通过人机交互选择更有效的机器学习指标。我们的应用研究主要集中在认知神经成像和生物医学成像方面。最近的一些重点包括①生物图像的生成模型,②时变脑电图的估计和分析。

http://sanmi.cs.illinois.edu/

成为VIP会员查看完整内容
0
30

近几年来,随着机器学习的普及,机器学习系统的公平性问题引起了实际的道德、社会等问题。图书《公平性与机器学习—局限与机遇》以公平性为核心问题来看待机器学习,提供了对当前机器学习实践以及为实现公平而提出的技术修复方案的批判性思考。

成为VIP会员查看完整内容
Fairness+and+Machine+Learning.pdf
0
12
小贴士
相关VIP内容
专知会员服务
50+阅读 · 7月29日
【NeurIPS2019报告推荐】公平与表示学习—UIUC Sanmi Koyejo教授
相关资讯
实验室论文被 ICDM 2019录用
inpluslab
16+阅读 · 2019年8月20日
实验室3篇论文被IJCAI 2019录用
inpluslab
7+阅读 · 2019年5月11日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
26+阅读 · 2018年4月25日
机器学习算法实践:朴素贝叶斯 (Naive Bayes)
Python开发者
3+阅读 · 2017年7月22日
机器学习算法实践:决策树 (Decision Tree)
Python开发者
9+阅读 · 2017年7月17日
机器学习算法比较
我爱机器学习
4+阅读 · 2016年12月11日
相关论文
Generating Rationales in Visual Question Answering
Hammad A. Ayyubi,Md. Mehrab Tanjim,Julian J. McAuley,Garrison W. Cottrell
3+阅读 · 4月4日
A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
Jorge Agnese,Jonathan Herrera,Haicheng Tao,Xingquan Zhu
4+阅读 · 2019年10月21日
Two-phase Hair Image Synthesis by Self-Enhancing Generative Model
Haonan Qiu,Chuan Wang,Hang Zhu,Xiangyu Zhu,Jinjin Gu,Xiaoguang Han
3+阅读 · 2019年2月28日
Takuhiro Kaneko,Kaoru Hiramatsu,Kunio Kashino
5+阅读 · 2018年5月27日
Pengda Qin,Weiran Xu,William Yang Wang
12+阅读 · 2018年5月24日
Christopher P. Burgess,Irina Higgins,Arka Pal,Loic Matthey,Nick Watters,Guillaume Desjardins,Alexander Lerchner
3+阅读 · 2018年4月10日
Ray Jiang,Sven Gowal,Timothy A. Mann,Danilo J. Rezende
4+阅读 · 2018年4月9日
Zhen Yang,Wei Chen,Feng Wang,Bo Xu
3+阅读 · 2018年4月8日
Junxuan Chen,Baigui Sun,Hao Li,Hongtao Lu,Xian-Sheng Hua
3+阅读 · 2016年9月20日
Top