System identification, the process of deriving mathematical models of dynamical systems from observed input-output data, has undergone a paradigm shift with the advent of learning-based methods. Addressing the intricate challenges of data-driven discovery in nonlinear dynamical systems, these methods have garnered significant attention. Among them, Sparse Identification of Nonlinear Dynamics (SINDy) has emerged as a transformative approach, distilling complex dynamical behaviors into interpretable linear combinations of basis functions. However, SINDy relies on domain-specific expertise to construct its foundational "library" of basis functions, which limits its adaptability and universality. In this work, we introduce a nonlinear system identification framework called LeARN that transcends the need for prior domain knowledge by learning the library of basis functions directly from data. To enhance adaptability to evolving system dynamics under varying noise conditions, we employ a novel meta-learning-based system identification approach that uses a lightweight deep neural network (DNN) to dynamically refine these basis functions. This not only captures intricate system behaviors but also adapts seamlessly to new dynamical regimes. We validate our framework on the Neural Fly dataset, showcasing its robust adaptation and generalization capabilities. Despite its simplicity, our LeARN achieves competitive dynamical error performance compared to SINDy. This work presents a step toward the autonomous discovery of dynamical systems, paving the way for a future where machine learning uncovers the governing principles of complex systems without requiring extensive domain-specific interventions.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员