Graph Neural Networks (GNNs) have been widely used to learn node representations and with outstanding performance on various tasks such as node classification. However, noise, which inevitably exists in real-world graph data, would considerably degrade the performance of GNNs as the noise is easily propagated via the graph structure. In this work, we propose a novel and robust method, Bayesian Robust Graph Contrastive Learning (BRGCL), which trains a GNN encoder to learn robust node representations. The BRGCL encoder is a completely unsupervised encoder. Two steps are iteratively executed at each epoch of training the BRGCL encoder: (1) estimating confident nodes and computing robust cluster prototypes of node representations through a novel Bayesian nonparametric method; (2) prototypical contrastive learning between the node representations and the robust cluster prototypes. Experiments on public and large-scale benchmarks demonstrate the superior performance of BRGCL and the robustness of the learned node representations. The code of BRGCL is available at \url{https://github.com/BRGCL-code/BRGCL-code}.


翻译:神经网络(GNNs)被广泛用于学习节点表达方式,在节点分类等各种任务上表现突出,但是,噪音(在现实世界图形数据中不可避免地存在)会大大降低GNN的性能,因为噪音很容易通过图形结构传播。在这项工作中,我们提出了一个创新而有力的方法,即Bayesian Robust 图表对比学习(BRGCL),它训练GN 编码器学习稳健的节点表达方式。BRGCL 编码器是一个完全不受监督的编码器。在BRGCL 编码器培训的每一个阶段,都会反复执行两个步骤:(1) 通过一种新型的Bayesian非参数方法,估计自信的节点和计算结点表示的稳健的集群原型;(2) 节点表达方式和强健健的集原型之间的准的对比学习。对公共基准和大型基准的实验显示了BRGCL的优异性表现和所学的节点表达方式。BRGCL的代码可以在urlas/gihubbub.BRGC/BRGC/BRGC/codecodecodegy。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年10月22日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员