Traditional machine learning techniques require centralizing all training data on one server or data hub. Due to the development of communication technologies and a huge amount of decentralized data on many clients, collaborative machine learning has become the main interest while providing privacy-preserving frameworks. In particular, federated learning (FL) provides such a solution to learn a shared model while keeping training data at local clients. On the other hand, in a wide range of machine learning and signal processing applications, the desired solution naturally has a certain structure that can be framed as sparsity with respect to a certain dictionary. This problem can be formulated as an optimization problem with sparsity constraints and solving it efficiently has been one of the primary research topics in the traditional centralized setting. In this paper, we propose a novel algorithmic framework, federated gradient matching pursuit (FedGradMP), to solve the sparsity constrained minimization problem in the FL setting. We also generalize our algorithms to accommodate various practical FL scenarios when only a subset of clients participate per round, when the local model estimation at clients could be inexact, or when the model parameters are sparse with respect to general dictionaries. Our theoretical analysis shows the linear convergence of the proposed algorithms. A variety of numerical experiments are conducted to demonstrate the great potential of the proposed framework -- fast convergence both in communication rounds and computation time for many important scenarios without sophisticated parameter tuning.


翻译:传统机器学习技术要求将所有培训数据集中在一个服务器或数据枢纽上。由于通信技术的发展和许多客户的大量分散数据,合作机器学习在提供隐私保护框架的同时成为主要的兴趣。特别是,联合学习(FL)为学习共享模型提供了这样的解决方案,同时保留当地客户的培训数据。另一方面,在广泛的机器学习和信号处理应用程序中,所期望的解决方案自然具有某种结构,可以作为某些字典的宽度来设计。这个问题可以被描述为一个最优化的问题,因为孔径限制和高效解决它已成为传统集中环境中的主要研究课题之一。在本文件中,我们提出了一个新的算法框架,即联动梯度匹配追寻(FedGradMP),以解决FL环境中限制最小度的问题。我们还将我们的各种算法加以概括,以适应各种实用的FL情景,因为只有客户每轮参加一个子组,而当地模型估计可能不精确,或者当模型参数与一般的精密度不相容度有关时,有效地解决它已成为传统集中环境中的主要研究课题。我们提出的一个新的算法分析框架,用以展示各种重要的精确的精确的计算方法。我们提出的数字分析的逻辑分析,以显示在进行的重要的精确的精确的逻辑分析中,以显示。我们所提出的一系列的逻辑分析框架的逻辑分析中可能显示。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
43+阅读 · 2019年12月20日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
19+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
43+阅读 · 2019年12月20日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员