Heterogeneous Graph Neural Networks (HGNNs) are a class of powerful deep learning methods widely used to learn representations of heterogeneous graphs. Despite the fast development of HGNNs, they still face some challenges such as over-smoothing, and non-robustness. Previous studies have shown that these problems can be reduced by using gradient regularization methods. However, the existing gradient regularization methods focus on either graph topology or node features. There is no universal approach to integrate these features, which severely affects the efficiency of regularization. In addition, the inclusion of gradient regularization into HGNNs sometimes leads to some problems, such as an unstable training process, increased complexity and insufficient coverage regularized information. Furthermore, there is still short of a complete theoretical analysis of the effects of gradient regularization on HGNNs. In this paper, we propose a novel gradient regularization method called Grug, which iteratively applies regularization to the gradients generated by both propagated messages and the node features during the message-passing process. Grug provides a unified framework integrating graph topology and node features, based on which we conduct a detailed theoretical analysis of their effectiveness. Specifically, the theoretical analyses elaborate the advantages of Grug: 1) Decreasing sample variance during the training process (Stability); 2) Enhancing the generalization of the model (Universality); 3) Reducing the complexity of the model (Simplicity); 4) Improving the integrity and diversity of graph information utilization (Diversity). As a result, Grug has the potential to surpass the theoretical upper bounds set by DropMessage (AAAI-23 Distinguished Papers). In addition, we evaluate Grug on five public real-world datasets with two downstream tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关论文
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员