The complete elliptic integral of the first kind (CEI-1) plays in a significant role in mathematics, physics and engineering. There is no simple formulae for its computation, thus numerical algorithms and solution are essential in practical problems. However, we find that the numerical solutions obtained via both MATLAB and Mathematica are not acceptable and should be treated seriously. For the purpose of obtaining correct and alternative numerical algorithms for the CEI-1, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss-Chebyshev method and Gauss-Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing CEI-1 are designed, verified, validated and tested, which can be utilized in R & D and be reused properly. In the sense of STEM education, system engineering and computational thinking, the Verification-Validation-Testing (VVT) stage is crucial for applications and teaching college students in order to avoid unnecessary losses.


翻译:在数学、物理和工程学方面,第一种完全的椭圆体(CEI-1)在数学、物理和工程学方面起着重要作用。没有简单的计算公式,因此数字算法和解决办法对实际问题至关重要。然而,我们发现,通过MATLAB和数学获得的数字解决办法是不可接受的,应当认真对待。为了获得CEI-1的正确和替代数字算法,无限系列方法、算术-地理平均数(AGM)方法、高斯-切比谢夫方法和高斯-Legendre方法与自上而下的战略详细讨论。计算CEI-1的四种关键算法是设计、核实、验证和测试的,可以在研发中加以利用并适当地再利用。在STEM教育、系统工程和计算思维的意义上,核查-估价-测试(VVT)阶段对于应用和教学大学生以避免不必要的损失至关重要。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员