Speech Emotion Recognition (SER) is of great importance in Human-Computer Interaction (HCI), as it provides a deeper understanding of the situation and results in better interaction. In recent years, various machine learning and deep learning algorithms have been developed to improve SER techniques. Recognition of emotions depends on the type of expression that varies between different languages. In this article, to further study this important factor in Farsi, we examine various deep learning techniques on the SheEMO dataset. Using signal features in low- and high-level descriptions and different deep networks and machine learning techniques, Unweighted Average Recall (UAR) of 65.20 is achieved with an accuracy of 78.29.


翻译:情感言语认知(SER)在人类-计算机互动(HCI)中非常重要,因为它有助于更深入地了解形势和更好的互动结果,近年来,为了改进SER技术,开发了各种机器学习和深层学习算法,对情感的识别取决于不同语言的表达方式,在本条中,为了进一步研究波斯语中的这一重要因素,我们研究了SheEMO数据集的各种深层学习技术,利用低层和高层描述中的信号特征以及不同的深层网络和机器学习技术,实现了65.20的未加权平均回调(UAR),精确度为78.29。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员