Emotions have a profound impact on our daily lives, influencing our thoughts, behaviors, and interactions, but also our physiological reactions. Recent advances in wearable technology have facilitated studying emotions through cardio-respiratory signals. Accelerometers offer a non-invasive, convenient, and cost-effective method for capturing heart- and pulmonary-induced vibrations on the chest wall, specifically Seismocardiography (SCG) and Accelerometry-Derived Respiration (ADR). Their affordability, wide availability, and ability to provide rich contextual data make accelerometers ideal for everyday use. While accelerometers have been used as part of broader modality fusions for Emotion Recognition (ER), their stand-alone potential via SCG and ADR remains unexplored. Bridging this gap could significantly help the embedding of ER into real-world applications. To address this gap, we introduce SCG as a novel modality for ER and evaluate its performance using the EmoWear dataset. First, we replicate the single-trial emotion classification pipeline from the DEAP dataset study, achieving similar results. Then we use our validated pipeline to train models that predict affective valence-arousal states using SCG and compare them against established cardiac signals, Electrocardiography (ECG) and Blood Volume Pulse (BVP). Results show that SCG is a viable modality for ER, achieving similar performance to ECG and BVP. By combining ADR with SCG, we achieved a working ER framework that only requires a single chest-worn accelerometer. These findings pave the way for integrating ER into real-world, enabling seamless affective computing in everyday life.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员