This paper presents a computationally efficient approach to blind source separation (BSS) of audio signals, applicable even when there are more sources than microphones (i.e., the underdetermined case). When there are as many sources as microphones (i.e., the determined case), BSS can be performed computationally efficiently by independent component analysis (ICA). Unfortunately, however, ICA is basically inapplicable to the underdetermined case. Another BSS approach using the multichannel Wiener filter (MWF) is applicable even to this case, and encompasses full-rank spatial covariance analysis (FCA) and multichannel non-negative matrix factorization (MNMF). However, these methods require massive numbers of matrix inversions to design the MWF, and are thus computationally inefficient. To overcome this drawback, we exploit the well-known property of diagonal matrices that matrix inversion amounts to mere inversion of the diagonal elements and can thus be performed computationally efficiently. This makes it possible to drastically reduce the computational cost of the above matrix inversions based on a joint diagonalization (JD) idea, leading to computationally efficient BSS. Specifically, we restrict the N spatial covariance matrices (SCMs) of all N sources to a class of (exactly) jointly diagonalizable matrices. Based on this approach, we present FastFCA, a computationally efficient extension of FCA. We also present a unified framework for underdetermined and determined audio BSS, which highlights a theoretical connection between FastFCA and other methods. Moreover, we reveal that FastFCA can be regarded as a regularized version of approximate joint diagonalization (AJD).


翻译:本文介绍了一种对声音信号的盲源分离(BSS)的计算效率方法,即使有比麦克风更多的来源(即未确定的情况),也适用该方法。但是,如果有麦克风(即确定的情况)等多种来源(即确定的情况),BSS可以以独立部件分析(ICA)进行计算效率。但不幸的是,ICA基本上不适用于未确定的情况。使用多频道Wiener过滤器(MWFS)的另一种BSS方法甚至适用于本案,并包括全面空间变换分析(FCA)和多频道非负矩阵因子化(MMMMMFF)。然而,这些方法需要大量矩阵变换来设计MWFFS(即确定的情况),因此计算效率。为了克服这一偏差,我们利用了众所周知的离差矩阵特性,该矩阵的变换换成仅仅是对异元素的变换,因此可以有效地进行计算。这有可能大幅降低以上矩阵变换的计算成本,同时,基于联合对A级(JSS目前不断变的逻辑联系)下,将SFCFCFA(我们确定的一个经常性的固定的不断变换的基数据基数据基),从而可以对一个我们进行直地计算。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
已删除
inpluslab
8+阅读 · 2019年10月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
VIP会员
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员