Free content websites that provide free books, music, games, movies, etc., have existed on the Internet for many years. While it is a common belief that such websites might be different from premium websites providing the same content types, an analysis that supports this belief is lacking in the literature. In particular, it is unclear if those websites are as safe as their premium counterparts. In this paper, we set out to investigate, by analysis and quantification, the similarities and differences between free content and premium websites, including their risk profiles. To conduct this analysis, we assembled a list of 834 free content websites offering books, games, movies, music, and software, and 728 premium websites offering content of the same type. We then contribute domain-, content-, and risk-level analysis, examining and contrasting the websites' domain names, creation times, SSL certificates, HTTP requests, page size, average load time, and content type. For risk analysis, we consider and examine the maliciousness of these websites at the website- and component-level. Among other interesting findings, we show that free content websites tend to be vastly distributed across the TLDs and exhibit more dynamics with an upward trend for newly registered domains. Moreover, the free content websites are 4.5 times more likely to utilize an expired certificate, 19 times more likely to be malicious at the website level, and 2.64 times more likely to be malicious at the component level. Encouraged by the clear differences between the two types of websites, we explore the automation and generalization of the risk modeling of the free content risky websites, showing that a simple machine learning-based technique can produce 86.81\% accuracy in identifying them.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员