The stochastic FitzHugh-Nagumo (FHN) model considered here is a two-dimensional nonlinear stochastic differential equation with additive degenerate noise, whose first component, the only one observed, describes the membrane voltage evolution of a single neuron. Due to its low dimensionality, its analytical and numerical tractability, and its neuronal interpretation, it has been used as a case study to test the performance of different statistical methods in estimating the underlying model parameters. Existing methods, however, often require complete observations, non-degeneracy of the noise or a complex architecture (e.g., to estimate the transition density of the process, "recovering" the unobserved second component), and they may not (satisfactorily) estimate all model parameters simultaneously. Moreover, these studies lack real data applications for the stochastic FHN model. Here, we tackle all challenges (non-globally Lipschitz drift, non-explicit solution, lack of available transition density, degeneracy of the noise, and partial observations) via an intuitive and easy-to-implement sequential Monte Carlo approximate Bayesian computation algorithm. The proposed method relies on a recent computationally efficient and structure-preserving numerical splitting scheme for synthetic data generation, and on summary statistics exploiting the structural properties of the process. We succeed in estimating all model parameters from simulated data and, more remarkably, real action potential data of rats. The presented novel real-data fit may broaden the scope and credibility of this classic and widely used neuronal model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员