In this thesis, we consider an $N$-dimensional Ornstein-Uhlenbeck (OU) process satisfying the linear stochastic differential equation $d\mathbf x(t) = - \mathbf B\mathbf x(t) dt + \boldsymbol \Sigma d \mathbf w(t).$ Here, $\mathbf B$ is a fixed $N \times N$ circulant friction matrix whose eigenvalues have positive real parts, $\boldsymbol \Sigma$ is a fixed $N \times M$ matrix. We consider a signal propagation model governed by this OU process. In this model, an underlying signal propagates throughout a network consisting of $N$ linked sensors located in space. We interpret the $n$-th component of the OU process as the measurement of the propagating effect made by the $n$-th sensor. The matrix $\mathbf B$ represents the sensor network structure: if $\mathbf B$ has first row $(b_1 \ , \ \dots \ , \ b_N),$ where $b_1>0$ and $b_2 \ , \ \dots \ ,\ b_N \le 0,$ then the magnitude of $b_p$ quantifies how receptive the $n$-th sensor is to activity within the $(n+p-1)$-th sensor. Finally, the $(m,n)$-th entry of the matrix $\mathbf D = \frac{\boldsymbol \Sigma \boldsymbol \Sigma^\text T}{2}$ is the covariance of the component noises injected into the $m$-th and $n$-th sensors. For different choices of $\mathbf B$ and $\boldsymbol \Sigma,$ we investigate whether Cyclicity Analysis enables us to recover the structure of network. Roughly speaking, Cyclicity Analysis studies the lead-lag dynamics pertaining to the components of a multivariate signal. We specifically consider an $N \times N$ skew-symmetric matrix $\mathbf Q,$ known as the lead matrix, in which the sign of its $(m,n)$-th entry captures the lead-lag relationship between the $m$-th and $n$-th component OU processes. We investigate whether the structure of the leading eigenvector of $\mathbf Q,$ the eigenvector corresponding to the largest eigenvalue of $\mathbf Q$ in modulus, reflects the network structure induced by $\mathbf B.$


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员