Language models have seen enormous progress on advanced benchmarks in recent years, but much of this progress has only been possible by using more costly models. Benchmarks may therefore present a warped picture of progress in practical capabilities per dollar. To remedy this, we use data from Artificial Analysis and Epoch AI to form the largest dataset of current and historical prices to run benchmarks to date. We find that the price for a given level of benchmark performance has decreased remarkably fast, around $5\times$ to $10\times$ per year, for frontier models on knowledge, reasoning, math, and software engineering benchmarks. These reductions in the cost of AI inference are due to economic forces, hardware efficiency improvements, and algorithmic efficiency improvements. Isolating out open models to control for competition effects and dividing by hardware price declines, we estimate that algorithmic efficiency progress is around $3\times$ per year. Finally, we recommend that evaluators both publicize and take into account the price of benchmarking as an essential part of measuring the real-world impact of AI.


翻译:近年来,语言模型在高级基准测试中取得了巨大进展,但许多进展仅通过使用成本更高的模型才得以实现。因此,基准测试可能扭曲了每美元实际能力进展的真实图景。为纠正这一问题,我们利用Artificial Analysis和Epoch AI的数据,构建了迄今为止最大规模的当前与历史基准测试运行价格数据集。研究发现,对于前沿模型在知识、推理、数学和软件工程基准测试中,达到特定性能水平的价格下降速度惊人,每年约降低5倍至10倍。AI推理成本的下降源于经济压力、硬件效率提升以及算法效率改进。通过分离开源模型以控制竞争效应,并除以硬件价格下降幅度,我们估算算法效率的年提升率约为3倍。最后,我们建议评估者将基准测试价格作为衡量AI实际影响的重要组成部分,予以公开并纳入考量。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员