Self-supervised learning method that provides generalized speech representations has recently received increasing attention. Wav2vec 2.0 is the most famous example, showing remarkable performance in numerous downstream speech processing tasks. Despite its success, it is challenging to use it directly for wake-up word detection on mobile devices due to its expensive computational cost. In this work, we propose LiteFEW, a lightweight feature encoder for wake-up word detection that preserves the inherent ability of wav2vec 2.0 with a minimum scale. In the method, the knowledge of the pre-trained wav2vec 2.0 is compressed by introducing an auto-encoder-based dimensionality reduction technique and distilled to LiteFEW. Experimental results on the open-source "Hey Snips" dataset show that the proposed method applied to various model structures significantly improves the performance, achieving over 20% of relative improvements with only 64k parameters.


翻译:提供通用语音演示的自监管学习方法最近受到越来越多的关注。 Wav2vec 2. 0 是最著名的例子, 展示了许多下游语音处理任务的显著表现。 尽管它取得了成功, 但由于它昂贵的计算成本, 直接在移动设备上进行警醒单词检测仍具有挑战性。 在这项工作中, 我们提议使用LiteFEW, 一个用于警醒单词检测的轻量级特效编码器, 以最小的尺度保存 wav2vec 2.0 的固有能力。 在这个方法中, 通过引入基于自动孵化器的维度减少技术, 并提炼给LiteFEW, 来压缩预培训的 wav2vec 2. 0 的知识。 “ Hey Snips” 数据集的实验结果显示, 适用于各种模型结构的拟议方法极大地改善了性能, 实现了20%以上的相对改进,只有64k 参数。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员