The data loss caused by unreliable network seriously impacts the results of remote visual SLAM systems. From our experiment, a loss of less than 1 second of data can lead to the failure of visual SLAM algorithms. We present a novel buffering method, ORBBuf, to reduce the impact of data loss on remote visual SLAM systems. We model the buffering problem as an optimization problem by introducing a similarity metric between frames, and use an efficient greedy-like algorithm that drops the frame that results in the least loss to the quality of SLAM results. We implement our ORBBuf method on ROS, a widely used middleware framework. Through an extensive evaluation on real-world scenarios and tens of gigabytes of datasets, we demonstrate that our ORBBuf method can be applied to different state-estimation algorithms (DSO and VINSFusion), different sensor data (both monocular images and stereo images), different scenes (both indoor and outdoor), and different network environments (both WiFi networks and 4G networks). Our experimental results indicate that the network losses indeed affect the SLAM results, and our ORBBuf method can reduce the RMSE up to 50 times comparing with the Drop-Oldest and Random buffering methods.
翻译:由不可靠的网络造成的数据损失严重影响了远程视觉 SLAM 系统的结果。 通过我们的实验, 损失不到1秒钟的数据可能导致视觉SLAM算法的失败。 我们提出了一种新的缓冲方法, ORBBuf, 以减少数据损失对远程视觉 SLAM 系统的影响。 我们将缓冲问题模拟成一个优化问题, 方法是在框架之间采用相似的度量, 并使用高效的贪婪类算法, 使框架降低SLAM 结果的质量。 我们在一个广泛使用的中间软件框架ROS上实施了我们的ORBUF方法。 通过对现实世界情景和数十千兆字节数据集进行广泛评估, 我们证明我们的ORBUf 方法可以适用于不同的州度算法( DSO 和 VINSFusion ) 、 不同的传感器数据( 包括镜像和立图像 ) 、 不同的场景( 包括室内和室外) 以及不同的网络环境( Wifi网络和 4G 网络) 。 我们的实验结果表明, 网络损失确实影响了SLM的结果, 我们的网络损失会影响SLM的结果, 以及我们的ORBUFFFFA- Rest- slow- surg- slow- 和SLOLOLO 和S-seral-x-x 比较 。