Supervised learning with tabular data presents unique challenges, including low data sizes, the absence of structural cues, and heterogeneous features spanning both categorical and continuous domains. Unlike vision and language tasks, where models can exploit inductive biases in the data, tabular data lacks inherent positional structure, hindering the effectiveness of self-attention mechanisms. While recent transformer-based models like TabTransformer, SAINT, and FT-Transformer (which we refer to as 3T) have shown promise on tabular data, they typically operate without leveraging structural cues such as positional encodings (PEs), as no prior structural information is usually available. In this work, we find both theoretically and empirically that structural cues, specifically PEs can be a useful tool to improve generalization performance for tabular transformers. We find that PEs impart the ability to reduce the effective rank (a form of intrinsic dimensionality) of the features, effectively simplifying the task by reducing the dimensionality of the problem, yielding improved generalization. To that end, we propose Tab-PET (PEs for Tabular Transformers), a graph-based framework for estimating and inculcating PEs into embeddings. Inspired by approaches that derive PEs from graph topology, we explore two paradigms for graph estimation: association-based and causality-based. We empirically demonstrate that graph-derived PEs significantly improve performance across 50 classification and regression datasets for 3T. Notably, association-based graphs consistently yield more stable and pronounced gains compared to causality-driven ones. Our work highlights an unexpected role of PEs in tabular transformers, revealing how they can be harnessed to improve generalization.
翻译:表格数据的监督学习面临独特挑战,包括数据规模小、缺乏结构线索,以及涵盖分类与连续域的异构特征。与视觉和语言任务不同(模型可利用数据中的归纳偏置),表格数据缺乏固有的位置结构,这阻碍了自注意力机制的有效性。尽管近期基于Transformer的模型(如TabTransformer、SAINT和FT-Transformer,我们统称为3T)在表格数据上展现出潜力,但它们通常未利用位置编码等结构线索,因为通常缺乏先验结构信息。在本工作中,我们从理论和实证两方面发现,结构线索(特别是位置编码)可作为提升表格Transformer泛化性能的有效工具。我们发现位置编码能够降低特征的有效秩(一种内在维度形式),通过降低问题维度有效简化任务,从而改善泛化能力。为此,我们提出Tab-PET(面向表格Transformer的位置编码),这是一个基于图的框架,用于估计位置编码并将其融入嵌入表示。受从图拓扑推导位置编码的方法启发,我们探索两种图估计范式:基于关联性和基于因果性。我们通过实证证明,在50个分类和回归数据集上,基于图推导的位置编码显著提升了3T模型的性能。值得注意的是,与因果驱动的方法相比,基于关联性的图始终能带来更稳定且显著的性能提升。本研究揭示了位置编码在表格Transformer中意想不到的作用,阐明了如何利用它们来提升泛化能力。