We consider online convex optimization when a number k of data points are outliers that may be corrupted. We model this by introducing the notion of robust regret, which measures the regret only on rounds that are not outliers. The aim for the learner is to achieve small robust regret, without knowing where the outliers are. If the outliers are chosen adversarially, we show that a simple filtering strategy on extreme gradients incurs O(k) additive overhead compared to the usual regret bounds, and that this is unimprovable, which means that k needs to be sublinear in the number of rounds. We further ask which additional assumptions would allow for a linear number of outliers. It turns out that the usual benign cases of independently, identically distributed (i.i.d.) observations or strongly convex losses are not sufficient. However, combining i.i.d. observations with the assumption that outliers are those observations that are in an extreme quantile of the distribution, does lead to sublinear robust regret, even though the expected number of outliers is linear.


翻译:当一 k 个数据点是可能会被腐蚀的离子体时,我们考虑在线封存优化。 我们通过引入强烈的遗憾概念来模拟这一点, 这一概念只衡量那些不是离子体的回合的遗憾。 学习者的目的是在不知道离子体在哪里的情况下实现小点强烈的遗憾。 如果从对立的角度选择离子体, 我们就会显示, 一种简单的极端梯体过滤策略与通常的遗憾界限相比, 产生O( k) 添加性管理费, 并且这是无法改进的, 这意味着 k 需要成为回合数中的子线性。 我们还会询问哪些额外的假设允许直线数的离子体。 结果是, 通常的独立、 相同分布( i. d.) 的观察或强烈的锥体损失并不足够。 但是, 将 i. d. 观察与假设离子体是分布极小的观察结果结合起来, 确实会导致亚线体强烈的遗憾, 即使预期的离子体数是线性。

1
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员