One of the components of natural language processing that has received a lot of investigation recently is semantic textual similarity. In computational linguistics and natural language processing, assessing the semantic similarity of words, phrases, paragraphs, and texts is crucial. Calculating the degree of semantic resemblance between two textual pieces, paragraphs, or phrases provided in both monolingual and cross-lingual versions is known as semantic similarity. Cross lingual semantic similarity requires corpora in which there are sentence pairs in both the source and target languages with a degree of semantic similarity between them. Many existing cross lingual semantic similarity models use a machine translation due to the unavailability of cross lingual semantic similarity dataset, which the propagation of the machine translation error reduces the accuracy of the model. On the other hand, when we want to use semantic similarity features for machine translation the same machine translations should not be used for semantic similarity. For Persian, which is one of the low resource languages, no effort has been made in this regard and the need for a model that can understand the context of two languages is felt more than ever. In this article, the corpus of semantic textual similarity between sentences in Persian and English languages has been produced for the first time by using linguistic experts. We named this dataset PESTS (Persian English Semantic Textual Similarity). This corpus contains 5375 sentence pairs. Also, different models based on transformers have been fine-tuned using this dataset. The results show that using the PESTS dataset, the Pearson correlation of the XLM ROBERTa model increases from 85.87% to 95.62%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员