We establish that a simple polynomial-time algorithm that we call reweighted spectral partitioning obtains small 2/3-balanced vertex-separators for a number of graph classes, including $O(\sqrt{n})$-sized separators for planar graphs, $O(\min\{(\log g)^2,\logΔ\}\cdot\sqrt{gn})$-sized separators for genus-$g$ graphs of maximum degree $Δ$, and $O(\min\{\log h,\sqrt{\logΔ}\}(h\log h\log\log h)\sqrt{n})$-sized separators for $K_h$-minor-free graphs of maximum degree $Δ$. To accomplish this, we first obtain a refined form of a Cheeger-style inequality relating the vertex expansion of a graph and the solution to a semidefinite program defined over the graph. Then, to obtain the guarantees for specific graph classes, we derive direct bounds on the value of the semidefinite program. We also obtain several other results of independent interest, including an improved separator theorem for the intersection graphs of $d$-dimensional balls with bounded ply, a new bound on the Fiedler value of genus-$g$ graphs, and a new "spectral" proof of the planar separator theorem.
翻译:我们证明了一种称为重加权谱划分的简单多项式时间算法,能够为多个图类获得较小的2/3平衡顶点分割器,具体包括:平面图的$O(\sqrt{n})$规模分割器、最大度为$Δ$的亏格$g$图的$O(\min\{(\log g)^2,\logΔ\}\cdot\sqrt{gn})$规模分割器,以及最大度为$Δ$的$K_h$-minor-free图的$O(\min\{\log h,\sqrt{\logΔ}\}(h\log h\log\log h)\sqrt{n})$规模分割器。为实现这一目标,我们首先建立了Cheeger型不等式的精细化形式,该形式关联了图的顶点扩展性与基于图定义的半定规划解。随后,为获得特定图类的保证结果,我们推导了该半定规划值的直接界。我们还获得了若干具有独立意义的结果,包括:对有界层叠度的$d$维球交图的分割器定理改进、亏格$g$图的Fiedler值新界,以及平面图分割器定理的新“谱”证明。