This paper proposes methods for producing compound selection decisions in a Gaussian sequence model. Given unknown, fixed parameters $μ_ {1:n}$ and known $σ_{1:n}$ with observations $Y_i \sim \textsf{N}(μ_i, σ_i^2)$, the decision maker would like to select a subset of indices $S$ so as to maximize utility $\frac{1}{n}\sum_{i\in S} (μ_i - K_i)$, for known costs $K_i$. Inspired by Stein's unbiased risk estimate (SURE), we introduce an almost unbiased estimator, called ASSURE, for the expected utility of a proposed decision rule. ASSURE allows a user to choose a welfare-maximizing rule from a pre-specified class by optimizing the estimated welfare, thereby producing selection decisions that borrow strength across noisy estimates. We show that ASSURE produces decision rules that are asymptotically no worse than the optimal but infeasible decision rule in the pre-specified class. We apply ASSURE to the selection of Census tracts for economic opportunity, the identification of discriminating firms, and the analysis of $p$-value decision procedures in A/B testing.


翻译:本文提出了一种在高斯序列模型中生成复合选择决策的方法。给定未知的固定参数 $μ_{1:n}$ 和已知的 $σ_{1:n}$,观测值 $Y_i \\sim \\textsf{N}(μ_i, σ_i^2)$,决策者希望选择一个索引子集 $S$,以最大化效用函数 $\\frac{1}{n}\\sum_{i\\in S} (μ_i - K_i)$,其中 $K_i$ 为已知成本。受斯坦因无偏风险估计(SURE)的启发,我们引入了一种称为ASSURE的近似无偏估计量,用于评估所提出决策规则的期望效用。ASSURE允许用户通过优化估计的福利,从预先指定的类别中选择福利最大化的规则,从而生成能够在噪声估计之间共享信息的决策选择。我们证明,ASSURE产生的决策规则在渐近意义上不劣于预先指定类别中不可行的最优决策规则。我们将ASSURE应用于经济机会普查区域的选择、歧视性企业的识别以及A/B测试中$p$值决策程序的分析。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员