Confidential computing (CC) or trusted execution enclaves (TEEs) is now the most common approach to enable secure computing in the cloud. The recent introduction of GPU TEEs by NVIDIA enables machine learning (ML) models to be trained without leaking model weights or data to the cloud provider. However, the potential performance implications of using GPU TEEs for ML training are not well characterized. In this work, we present an in-depth characterization study on performance overhead associated with running distributed data parallel (DDP) ML training with GPU Trusted Execution Environments (TEE). Our study reveals the performance challenges in DDP training within GPU TEEs. DDP uses ring-all-reduce, a well-known approach, to aggregate gradients from multiple devices. Ring all-reduce consists of multiple scatter-reduce and all-gather operations. In GPU TEEs only the GPU package (GPU and HBM memory) is trusted. Hence, any data communicated outside the GPU packages must be encrypted and authenticated for confidentiality and integrity verification. Hence, each phase of the ring-all-reduce requires encryption and message authentication code (MAC) generation from the sender, and decryption and MAC authentication on the receiver. As the number of GPUs participating in DDP increases, the overhead of secure inter-GPU communication during ring-all-reduce grows proportionally. Additionally, larger models lead to more asynchronous all-reduce operations, exacerbating the communication cost. Our results show that with four GPU TEEs, depending on the model that is being trained, the runtime per training iteration increases by an average of 8x and up to a maximum of 41.6x compared to DDP training without TEE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员