In this paper, we are concerned with the inversion of circulant matrices and their quantized tensor-train (QTT) structure. In particular, we show that the inverse of a complex circulant matrix $A$, generated by the first column of the form $(a_0,\dots,a_{m-1},0,\dots,0,a_{-n},\dots, a_{-1})^\top$ admits a QTT representation with the QTT ranks bounded by $(m+n)$. Under certain assumptions on the entries of $A$, we also derive an explicit QTT representation of $A^{-1}$. The latter can be used, for instance, to overcome stability issues arising when numerically solving differential equations with periodic boundary conditions in the QTT format.


翻译:在本文中,我们关注循环剂基体及其量化的抗拉力结构的倒置,特别是,我们表明,以美元(a_0,\dots,a ⁇ m-1},0,\dots,0,a ⁇ -n},\docks,a ⁇ -}},a ⁇ -}}}} ⁇ top$为QTT在QT排中的代表机构,按美元(m+n)的顺序排列。在美元条目的某些假设下,我们还得出了明确的QTT代表单位为$A}-1美元。例如,后者可以用来克服在QTT格式中以数字方式解决带有定期边界条件的差别方程式时产生的稳定性问题。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员