Recent advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs) have enabled agentic search systems that interleave multi-step reasoning with external tool use. However, existing frameworks largely rely on unstructured natural-language reasoning and accumulate raw intermediate traces in the context, which often leads to unstable reasoning trajectories, context overflow, and degraded performance on complex multi-hop queries. In this study, we introduce Laser, a general framework for stabilizing and scaling agentic search. Laser defines a symbolic action protocol that organizes agent behaviors into three spaces: planning, task-solving, and retrospection. Each action is specified with explicit semantics and a deterministic execution format, enabling structured and logical reasoning processes and reliable action parsing. This design makes intermediate decisions interpretable and traceable, enhancing explicit retrospection and fine-grained control over reasoning trajectories. In coordination with parsable actions, Laser further maintains a compact context register that stores only essential states of the reasoning process, allowing the agent to reason over long horizons without uncontrolled context expansion. Experiments on Qwen2.5/3-series models across challenging multi-hop QA datasets show that Laser consistently outperforms existing agentic search baselines under both prompting-only and fine-tuning settings, demonstrating that Laser provides a principled and effective foundation for robust, scalable agentic search.
翻译:近年来,大型语言模型(LLMs)与大型推理模型(LRMs)的进展催生了能够将多步推理与外部工具使用交织在一起的智能体搜索系统。然而,现有框架主要依赖于非结构化的自然语言推理,并在上下文中累积原始的中间轨迹,这常常导致推理轨迹不稳定、上下文溢出以及在复杂多跳查询上性能下降。在本研究中,我们提出了Laser,一个用于稳定和扩展智能体搜索的通用框架。Laser定义了一种符号化动作协议,将智能体行为组织到三个空间:规划、任务求解与反思。每个动作都具有明确的语义和确定性的执行格式,从而实现了结构化、逻辑化的推理过程以及可靠的动作解析。这种设计使得中间决策可解释、可追溯,增强了显式反思能力以及对推理轨迹的细粒度控制。与可解析的动作相协调,Laser进一步维护了一个紧凑的上下文寄存器,该寄存器仅存储推理过程的关键状态,使得智能体能够在长视野上进行推理,而无需面对不受控的上下文扩张。在具有挑战性的多跳问答数据集上,基于Qwen2.5/3系列模型的实验表明,无论是在纯提示还是微调设置下,Laser均持续优于现有的智能体搜索基线方法,这证明Laser为构建鲁棒、可扩展的智能体搜索提供了一个原则性强且有效的基础。