The corpus callosum, the largest commissural structure in the human brain, is a central focus in research on aging and neurological diseases. It is also a critical target for interventions such as deep brain stimulation and serves as an important biomarker in clinical trials, including those investigating remyelination therapies. Despite extensive research on corpus callosum segmentation, few publicly available tools provide a comprehensive and automated analysis pipeline. To address this gap, we present FastSurfer-CC, an efficient and fully automated framework for corpus callosum morphometry. FastSurfer-CC automatically identifies mid-sagittal slices, segments the corpus callosum and fornix, localizes the anterior and posterior commissures to standardize head positioning, generates thickness profiles and subdivisions, and extracts eight shape metrics for statistical analysis. We demonstrate that FastSurfer-CC outperforms existing specialized tools across the individual tasks. Moreover, our method reveals statistically significant differences between Huntington's disease patients and healthy controls that are not detected by the current state-of-the-art.
翻译:胼胝体作为人脑中最大的连合结构,是衰老与神经系统疾病研究的核心焦点。它也是深部脑刺激等干预措施的关键靶点,并在包括髓鞘再生疗法在内的临床试验中作为重要的生物标志物。尽管针对胼胝体分割已有广泛研究,但鲜有公开工具提供全面且自动化的分析流程。为填补这一空白,我们提出了FastSurfer-CC——一个高效、全自动的胼胝体形态测量框架。FastSurfer-CC能够自动识别正中矢状面切片,分割胼胝体与穹窿,定位前连合与后连合以实现头部位置标准化,生成厚度分布图与亚区划分,并提取八项形态指标用于统计分析。我们证明,FastSurfer-CC在各项独立任务中均优于现有专用工具。此外,本方法揭示了亨廷顿病患者与健康对照组之间具有统计学显著性的差异,而当前最先进方法未能检测到这些差异。