We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
翻译:我们提出了一种多智能体、人在回路的协同设计工作流,用于设计具有指定横向对角门的量子码。该工作流建立在子集和线性规划(SSLP)框架(arXiv:2504.20847)之上,该框架通过模余数对基字符串进行划分,并通过小型线性规划强制执行$Z$边际Knill-Laflamme(KL)等式。该工作流由GPT-5驱动,并在TeXRA(https://texra.ai)平台上实现——这是一个支持迭代工具使用循环智能体与推导-编辑工作流推理智能体的多智能体研究助手平台。我们在LaTeX-Python环境中工作,智能体在此环境中进行推理、编辑文档、执行代码,并将其工作同步至Git/Overleaf。在此工作空间内,三个角色协同合作:合成智能体负责问题建模;搜索智能体负责扫描/筛选候选方案并将数值精确化为有理数;审计智能体则独立检查所有KL等式及诱导的逻辑操作。作为第一步,我们专注于距离$d=2$且具有非简并余数的情形。针对码维数$K\in\{2,3,4\}$和$n\le6$个量子比特,系统扫描生成了经证书验证的表格,记录了可实现的循环逻辑群——所有这些均由新发现的量子码实现,例如,对于$K=3$,我们在$n=6$时获得了阶为$16$的群。基于已验证的实例,合成智能体将重复出现的结构抽象为闭式族,并证明其对所有参数均满足KL等式。该智能体进一步证明,SSLP框架能够容纳余数简并性,并展示了一个新的$((6,4,2))$码,该码实现了横向受控相位门$diag(1,1,1,i)$。总体而言,该工作流将横向对角门的可行性问题重构为一个大规模执行的解析流程,结合了系统枚举与精确的解析重建。它产生了可复现的码构造方案,支持向更大$K$和更高距离的有针对性扩展,并推动数据驱动的分类研究。