While pre-trained language models have obtained state-of-the-art performance for several natural language understanding tasks, they are quite opaque in terms of their decision-making process. While some recent works focus on rationalizing neural predictions by highlighting salient concepts in the text as justifications or rationales, they rely on thousands of labeled training examples for both task labels as well as an-notated rationales for every instance. Such extensive large-scale annotations are infeasible to obtain for many tasks. To this end, we develop a multi-task teacher-student framework based on self-training language models with limited task-specific labels and rationales, and judicious sample selection to learn from informative pseudo-labeled examples1. We study several characteristics of what constitutes a good rationale and demonstrate that the neural model performance can be significantly improved by making it aware of its rationalized predictions, particularly in low-resource settings. Extensive experiments in several bench-mark datasets demonstrate the effectiveness of our approach.


翻译:虽然经过培训的语文模式在几项自然语言理解任务中取得了最先进的表现,但在决策过程方面却相当不透明。虽然最近的一些工作侧重于通过强调案文中突出的概念作为理由或理由,使神经预测合理化,但是它们依赖数千个标有标签的培训范例来标注两种任务标签以及每个任务的说明理由。这种广泛的大规模说明对于许多任务来说是行不通的。为此,我们制定了一个多任务教师-学生框架,其基础是自我培训语言模式,其特定任务标签和理由有限,以及明智的抽样选择,以便从信息化的假标签实例中学习。1 我们研究构成良好理由的若干特征,并表明通过了解其合理预测,特别是在低资源环境中的预测,可以大大改进神经模型的性能。在几个基准数据集中进行的广泛实验表明我们的方法的有效性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
26+阅读 · 2019年3月5日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Top
微信扫码咨询专知VIP会员