Alon, Krivelevich, and Sudakov conjectured in 1999 that every $F$-free graph of maximum degree at most $Δ$ has chromatic number $O(Δ/ \log Δ)$. This was previously known only for almost bipartite graphs, that is, for subgraphs of $K_{1,t,t}$ (verified by Alon, Krivelevich, and Sudakov themselves), while most recent results were concerned with improving the leading constant factor in the case where $F$ is almost bipartite. We prove this conjecture for all $3$-colorable graphs $F$, i.e. subgraphs of $K_{t,t,t}$, representing the first progress toward the conjecture since it was posed. A closely related conjecture of Ajtai, Erdős, Komlós, and Szemerédi from 1981 asserts that for every graph $F$, every $n$-vertex $F$-free graph of average degree $d$ contains an independent set of size $Ω(n \log d / d)$. We prove this conjecture in a strong form for all 3-colorable graphs $F$. More precisely, we show that every $n$-vertex $K_{t,t,t}$-free graph of average degree $d$ contains an independent set of size at least $(1 - o(1)) n \log d / d$, matching Shearer's celebrated bound for triangle-free graphs (the case $t = 1$) and thereby yielding a substantial strengthening of it. Our proof combines a new variant of the Rödl nibble method for constructing independent sets with a Turán-type result on $K_{t,t,t}$-free graphs.
翻译:Alon、Krivelevich和Sudakov于1999年猜想:对于任意不含$F$子图且最大度不超过$Δ$的图,其色数为$O(Δ/ \log Δ)$。此前该猜想仅在几乎二部图(即$K_{1,t,t}$的子图)情形下得到验证(由Alon、Krivelevich和Sudakov本人完成),而近期研究主要致力于改进当$F$为几乎二部图时的首项常数因子。本文对所有3-可着色图$F$(即$K_{t,t,t}$的子图)证明了该猜想,这是自猜想提出以来的首次实质性进展。与此紧密相关的Ajtai、Erdős、Komlós和Szemerédi于1981年提出的猜想断言:对于任意图$F$,每个具有$n$个顶点、平均度为$d$且不含$F$子图的图都包含一个大小为$Ω(n \log d / d)$的独立集。我们对所有3-可着色图$F$给出了该猜想的强形式证明。具体而言,我们证明每个具有$n$个顶点、平均度为$d$且不含$K_{t,t,t}$子图的图都包含一个大小至少为$(1 - o(1)) n \log d / d$的独立集,该结果与Shearer在无三角形图(即$t = 1$情形)中的经典界限相匹配,从而实现了对该结果的显著强化。我们的证明结合了用于构造独立集的Rödl微扰法的新变体,以及关于不含$K_{t,t,t}$子图的图的Turán型结果。