Motivated by graph theory, artificial neural networks (ANNs) are traditionally structured as layers of neurons (nodes), which learn useful information by the passage of data through interconnections (edges). In the machine learning realm, graph structures (i.e., neurons and connections) of ANNs have recently been explored using various graph-theoretic measures linked to their predictive performance. On the other hand, in network science (NetSci), certain graph measures including entropy and curvature are known to provide insight into the robustness and fragility of real-world networks. In this work, we use these graph measures to explore the robustness of various ANNs to adversarial attacks. To this end, we (1) explore the design space of inter-layer and intra-layers connectivity regimes of ANNs in the graph domain and record their predictive performance after training under different types of adversarial attacks, (2) use graph representations for both inter-layer and intra-layers connectivity regimes to calculate various graph-theoretic measures, including curvature and entropy, and (3) analyze the relationship between these graph measures and the adversarial performance of ANNs. We show that curvature and entropy, while operating in the graph domain, can quantify the robustness of ANNs without having to train these ANNs. Our results suggest that the real-world networks, including brain networks, financial networks, and social networks may provide important clues to the neural architecture search for robust ANNs. We propose a search strategy that efficiently finds robust ANNs amongst a set of well-performing ANNs without having a need to train all of these ANNs.


翻译:由图形理论驱动的人工神经网络(ANNS)传统上是作为神经神经元(NNS)的层层结构,通过通过连接(Gedges)通过数据传递来学习有用的信息。在机器学习领域,最近利用与预测性能相关的各种图形理论测量方法探索了ANNS的图形结构(即神经和连接 ) 。另一方面,在网络科学(NetSci)中,已知某些图形措施,包括英特利和曲调,以洞察真实世界网络的稳健性和脆弱性。在这项工作中,我们利用这些图形措施来探索各种ANNPs对对抗性攻击的可靠性能。为此,我们(1)在图形领域探索ANNS的跨层和内部连通性体系的设计空间,记录其在接受不同类型对抗性攻击的培训后的预测性性能。(2)在跨层和内部连通性体系中使用图形显示各种图表-理论的稳健性和脆弱性,包括曲调和曲调,以及(3)分析这些图表网络之间的内稳健性关系,我们无法显示稳定的内部网络。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
8+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
31+阅读 · 2018年11月13日
Top
微信扫码咨询专知VIP会员