The most common strategy of imputing missing values in a table is to study either the column-column relationship or the row-row relationship of the data table, then use the relationship to impute the missing values based on the non-missing values from other columns of the same row, or from the other rows of the same column. This paper introduces a double autoencoder for imputation ($Ae^2I$) that simultaneously and collaboratively uses both row-row relationship and column-column relationship to impute the missing values. Empirical tests on Movielens 1M dataset demonstrated that $Ae^2I$ outperforms the current state-of-the-art models for recommender systems by a significant margin.


翻译:在表格中估算缺失值的最常见策略是研究数据表的列列列关系或行行-行关系,然后使用此关系根据同一行其他列的未遗漏值或同一列的其他行的缺漏值估算缺失值。本文为估算引入了一种双自动编码器(Ae ⁇ 2I$),该计算器同时和协作使用行-行关系和列-栏关系来估算缺失值。对Movelens 1M数据集进行的经验性测试显示,$A ⁇ 2I$大大超过了目前推荐系统最先进的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员