CholeskyQR is an efficient algorithm for QR factorization with several advantages compared with orhter algorithms. In order to improve its orthogonality, CholeskyQR2 is developed \cite{2014}\cite{error}. To deal with ill-conditioned matrices, a shifted item $s$ is introduced and we have Shifted CholeskyQR3 \cite{Shifted}. In many problems in the industry, QR factorization for sparse matrices is very common, especially for some sparse matrices with special structures. In this work, we discuss the property of CholeskyQR-type algorithms for sparse matrices. We introduce new definitions for the input sparse matrix $X$ and divide them into two types based on column properties. We provide better sufficient conditions for $\kappa_{2}(X)$ and better shifted item $s$ for CholeskyQR-type algorithms under certain element-norm conditiones(ENCs) compared with the original ones in \cite{Shifted}\cite{error}, together with an alternative error analysis for the algorithm. The steps of analysis utilize the properties of the $g$-norm of the matrix which is given in the previous work. Moreover, a new three-step CholeskyQR-type algorithm with two shifted items called 3C is developed for sparse matrices with good orthogonality. We do numerical experiments with some typical real examples to show the advantages of improved algorithms compared with the original ones in the previous works.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月18日
Arxiv
0+阅读 · 2024年11月18日
Arxiv
0+阅读 · 2024年11月13日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年11月18日
Arxiv
0+阅读 · 2024年11月18日
Arxiv
0+阅读 · 2024年11月13日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员