Binary Balanced Tree RvNNs (BBT-RvNNs) enforce sequence composition according to a preset balanced binary tree structure. Thus, their non-linear recursion depth is just $\log_2 n$ ($n$ being the sequence length). Such logarithmic scaling makes BBT-RvNNs efficient and scalable on long sequence tasks such as Long Range Arena (LRA). However, such computational efficiency comes at a cost because BBT-RvNNs cannot solve simple arithmetic tasks like ListOps. On the flip side, RvNNs (e.g., Beam Tree RvNN) that do succeed on ListOps (and other structure-sensitive tasks like formal logical inference) are generally several times more expensive than even RNNs. In this paper, we introduce a novel framework -- Recursion in Recursion (RIR) to strike a balance between the two sides - getting some of the benefits from both worlds. In RIR, we use a form of two-level nested recursion - where the outer recursion is a $k$-ary balanced tree model with another recursive model (inner recursion) implementing its cell function. For the inner recursion, we choose Beam Tree RvNNs (BT-RvNN). To adjust BT-RvNNs within RIR we also propose a novel strategy of beam alignment. Overall, this entails that the total recursive depth in RIR is upper-bounded by $k \log_k n$. Our best RIR-based model is the first model that demonstrates high ($\geq 90\%$) length-generalization performance on ListOps while at the same time being scalable enough to be trainable on long sequence inputs from LRA. Moreover, in terms of accuracy in the LRA language tasks, it performs competitively with Structured State Space Models (SSMs) without any special initialization - outperforming Transformers by a large margin. On the other hand, while SSMs can marginally outperform RIR on LRA, they (SSMs) fail to length-generalize on ListOps. Our code is available at: \url{https://github.com/JRC1995/BeamRecursionFamily/}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员