This paper proposes a competitive and computationally efficient approach to probabilistic rainfall nowcasting. A video projector (V-JEPA Vision Transformer) associated to a lightweight probabilistic head is attached to a pre-trained satellite vision encoder (DINOv3-SAT493M) to map encoder tokens into a discrete empirical CDF (eCDF) over 4-hour accumulated rainfall. The projector-head is optimized end-to-end over the Ranked Probability Score (RPS). As an alternative, 3D-UNET baselines trained with an aggregate Rank Probability Score and a per-pixel Gamma-Hurdle objective are used. On the Weather4Cast 2025 benchmark, the proposed method achieved a promising performance, with a CRPS of 3.5102, which represents $\approx$ 26% in effectiveness gain against the best 3D-UNET.
翻译:本文提出了一种具有竞争力且计算高效的概率性临近降雨预报方法。该方法将视频投影器(V-JEPA Vision Transformer)与轻量级概率头相结合,并连接到预训练的卫星视觉编码器(DINOv3-SAT493M)上,以将编码器标记映射为4小时累积降雨量的离散经验累积分布函数(eCDF)。投影器-头模块通过排序概率评分(RPS)进行端到端优化。作为替代方案,使用了基于聚合排序概率评分和逐像素Gamma-Hurdle目标训练的3D-UNET基线模型。在Weather4Cast 2025基准测试中,所提方法取得了令人期待的性能,其连续排序概率评分(CRPS)为3.5102,相对于最佳3D-UNET模型实现了约26%的效能提升。