Accurate renewable energy forecasting is essential to reduce dependence on fossil fuels and enabling grid decarbonization. However, current approaches fail to effectively integrate the rich spatial context of weather patterns with their temporal evolution. This work introduces a novel approach that treats weather maps as tokens in transformer sequences to predict renewable energy. Hourly weather maps are encoded as spatial tokens using a lightweight convolutional neural network, and then processed by a transformer to capture temporal dynamics across a 45-hour forecast horizon. Despite disadvantages in input initialization, evaluation against ENTSO-E operational forecasts shows a reduction in RMSE of about 60% and 20% for wind and solar respectively. A live dashboard showing daily forecasts is available at: https://www.sardiniaforecast.ifabfoundation.it.


翻译:准确的可再生能源预测对于减少对化石燃料的依赖和实现电网脱碳至关重要。然而,现有方法未能有效整合天气模式丰富的空间背景与其时间演变。本研究提出一种创新方法,将天气图视为Transformer序列中的令牌来预测可再生能源。每小时天气图通过轻量级卷积神经网络编码为空间令牌,随后由Transformer处理以捕捉45小时预测范围内的时序动态。尽管在输入初始化方面存在不足,但与ENTSO-E运营预测的评估比较显示,风能和太阳能的均方根误差分别降低了约60%和20%。展示每日预测的实时仪表板可在以下网址访问:https://www.sardiniaforecast.ifabfoundation.it。

0
下载
关闭预览

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
【CIKM2020】多模态知识图谱推荐系统,Multi-modal KG for RS
专知会员服务
98+阅读 · 2020年8月24日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员