Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
翻译:多重成像技术通过实现组织样本中多种生物标志物的同步可视化,正在彻底改变病理学领域,提供了传统苏木精-伊红(H&E)染色无法实现的分子水平洞察。然而,多重数据采集的复杂性和成本阻碍了其广泛应用。此外,现有大多数大型H&E图像库缺乏对应的多重图像,限制了多模态分析的机会。为应对这些挑战,我们利用潜在扩散模型(LDMs)的最新进展,该模型通过利用其强大的先验知识进行目标域微调,擅长建模复杂数据分布。本文提出一种新颖的虚拟多重染色框架,该框架利用预训练的LDM参数,通过条件扩散模型从H&E图像生成多重图像。我们的方法通过对每个标记进行扩散模型条件化,实现逐标记生成,同时所有标记共享相同架构。为解决不同标记染色间像素值分布差异的挑战并提升推理速度,我们通过像素级损失函数对模型进行单步采样微调,从而增强色彩对比度保真度和推理效率。我们在两个公开数据集上验证了该框架,特别展示了其能有效生成多达18种不同标记类型且精度更高,较先前方法仅能实现2-3种标记类型有显著提升。这一验证凸显了我们框架在开创虚拟多重染色方面的潜力。最终,本文弥合了H&E与多重成像之间的鸿沟,有望实现对现有H&E图像库的回顾性研究和大规模分析。