While Graph Neural Networks (GNNs) have proven highly effective at modeling relational data, pairwise connections cannot fully capture multi-way relationships naturally present in complex real-world systems. In response to this, Topological Deep Learning (TDL) leverages more general combinatorial representations -- such as simplicial or cellular complexes -- to accommodate higher-order interactions. Existing TDL methods often extend GNNs through Higher-Order Message Passing (HOMP), but face critical \emph{scalability challenges} due to \textit{(i)} a combinatorial explosion of message-passing routes, and \textit{(ii)} significant complexity overhead from the propagation mechanism. This work presents HOPSE (Higher-Order Positional and Structural Encoder), an alternative method to solve tasks involving higher-order interactions \emph{without message passing}. Instead, HOPSE breaks \emph{arbitrary higher-order domains} into their neighborhood relationships using a Hasse graph decomposition. This method shows that decoupling the representation learning of neighborhood topology from that of attributes results in lower computational complexity, casting doubt on the need for HOMP. The experiments on molecular graph tasks and topological benchmarks show that HOPSE matches performance on traditional TDL datasets and outperforms HOMP methods on topological tasks, achieving up to $7\times$ speedups over HOMP-based models, opening a new path for scalable TDL.
翻译:尽管图神经网络(GNN)已被证明在建模关系数据方面非常有效,但成对连接无法完全捕捉复杂现实系统中天然存在的多路关系。针对这一问题,拓扑深度学习(TDL)利用更一般的组合表示——如单纯复形或胞腔复形——来容纳高阶相互作用。现有的TDL方法通常通过高阶消息传递(HOMP)扩展GNN,但由于(i)消息传递路径的组合爆炸,以及(ii)传播机制带来的显著复杂度开销,面临着严重的可扩展性挑战。本文提出HOPSE(高阶位置与结构编码器),这是一种无需消息传递即可解决涉及高阶相互作用任务的替代方法。HOPSE通过哈斯图分解将任意高阶域分解为其邻域关系。该方法表明,将邻域拓扑的表示学习与属性表示学习解耦可降低计算复杂度,从而质疑了HOMP的必要性。在分子图任务和拓扑基准测试上的实验表明,HOPSE在传统TDL数据集上性能相当,并在拓扑任务上优于HOMP方法,相比基于HOMP的模型实现了高达7倍的加速,为可扩展TDL开辟了新路径。