Accurate segmentation of vertebral metastasis in CT is clinically important yet difficult to scale, as voxel-level annotations are scarce and both lytic and blastic lesions often resemble benign degenerative changes. We introduce a weakly supervised method trained solely on vertebra-level healthy/malignant labels, without any lesion masks. The method combines a Diffusion Autoencoder (DAE) that produces a classifier-guided healthy edit of each vertebra with pixel-wise difference maps that propose candidate lesion regions. To determine which regions truly reflect malignancy, we introduce Hide-and-Seek Attribution: each candidate is revealed in turn while all others are hidden, the edited image is projected back to the data manifold by the DAE, and a latent-space classifier quantifies the isolated malignant contribution of that component. High-scoring regions form the final lytic or blastic segmentation. On held-out radiologist annotations, we achieve strong blastic/lytic performance despite no mask supervision (F1: 0.91/0.85; Dice: 0.87/0.78), exceeding baselines (F1: 0.79/0.67; Dice: 0.74/0.55). These results show that vertebra-level labels can be transformed into reliable lesion masks, demonstrating that generative editing combined with selective occlusion supports accurate weakly supervised segmentation in CT.
翻译:CT中椎体转移瘤的精确分割具有重要临床意义,但难以大规模推广,因为体素级标注稀缺,且溶骨性和成骨性病变常与良性退行性改变相似。我们提出一种仅使用椎体级健康/恶性标签(无需任何病灶掩膜)训练的弱监督方法。该方法结合了扩散自编码器(DAE)——可生成每个椎体的分类器引导健康编辑图像——与逐像素差异图,后者可提出候选病灶区域。为确定哪些区域真实反映恶性病变,我们引入隐藏-揭示归因:依次揭示每个候选区域并隐藏其余区域,通过DAE将编辑后图像投影回数据流形,再由潜在空间分类器量化该成分的独立恶性贡献度。高分区域最终形成溶骨性或成骨性分割结果。在保留的放射科医师标注数据上,尽管未使用掩膜监督,我们仍取得了优异的成骨性/溶骨性分割性能(F1分数:0.91/0.85;Dice系数:0.87/0.78),超越基线方法(F1分数:0.79/0.67;Dice系数:0.74/0.55)。这些结果表明椎体级标签可转化为可靠的病灶掩膜,证明生成式编辑结合选择性遮挡能支持CT中准确的弱监督分割。