Real-world time series data often exhibits substantial missing values, posing challenges for advanced analysis. A common approach to addressing this issue is imputation, where the primary challenge lies in determining the appropriate values to fill in. While previous deep learning methods have proven effective for time series imputation, they often produce overconfident imputations, which poses a potentially overlooked risk to the reliability of the intelligent system. Diffusion methods are proficient in estimating probability distributions but face challenges under a high missing rate and are, moreover, computationally expensive due to the nature of the generative model framework. In this paper, we propose Quantile Sub-Ensembles, a novel method that estimates uncertainty with ensembles of quantile-regression-based task networks and incorporate Quantile Sub-Ensembles into a non-generative time series imputation method. Our method not only produces accurate and reliable imputations, but also remains computationally efficient due to its non-generative framework. We conduct extensive experiments on five real-world datasets, and the results demonstrates superior performance in both deterministic and probabilistic imputation compared to baselines across most experimental settings. The code is available at https://github.com/yingliu-coder/QSE.


翻译:现实世界中的时间序列数据常存在大量缺失值,这给高级分析带来了挑战。处理此问题的常用方法是填补,其核心难点在于确定合适的填补值。尽管以往的深度学习方法在时间序列填补中已被证明有效,但它们往往产生过度自信的填补结果,这可能对智能系统的可靠性构成潜在且被忽视的风险。扩散方法擅长估计概率分布,但在高缺失率下面临挑战,且由于生成模型框架的特性,计算成本较高。本文提出分位数子集成,这是一种新颖的方法,通过基于分位数回归的任务网络集成来估计不确定性,并将分位数子集成融入非生成式时间序列填补方法中。我们的方法不仅产生准确可靠的填补结果,而且由于其非生成式框架,保持了计算效率。我们在五个真实世界数据集上进行了广泛实验,结果表明在大多数实验设置下,该方法在确定性和概率性填补方面均优于基线模型。代码可在 https://github.com/yingliu-coder/QSE 获取。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员