For driving safely and efficiently in highway scenarios, autonomous vehicles (AVs) must be able to predict future behaviors of surrounding object vehicles (OVs), and assess collision risk accurately for reasonable decision-making. Aiming at autonomous driving in highway scenarios, a predictive collision risk assessment method based on trajectory prediction of OVs is proposed in this paper. Firstly, the vehicle trajectory prediction is formulated as a sequence generation task with long short-term memory (LSTM) encoder-decoder framework. Convolutional social pooling (CSP) and graph attention network (GAN) are adopted for extracting local spatial vehicle interactions and distant spatial vehicle interactions, respectively. Then, two basic risk metrics, time-to-collision (TTC) and minimal distance margin (MDM), are calculated between the predicted trajectory of OV and the candidate trajectory of AV. Consequently, a time-continuous risk function is constructed with temporal and spatial risk metrics. Finally, the vehicle trajectory prediction model CSP-GAN-LSTM is evaluated on two public highway datasets. The quantitative results indicate that the proposed CSP-GAN-LSTM model outperforms the existing state-of-the-art (SOTA) methods in terms of position prediction accuracy. Besides, simulation results in typical highway scenarios further validate the feasibility and effectiveness of the proposed predictive collision risk assessment method.


翻译:为了在高速公路场景中实现安全、高效的自动驾驶,自动驾驶汽车(AVs)必须能够预测周围物体车辆(OVs)未来的行为,并准确评估碰撞风险,以进行合理的决策。针对自动驾驶在高速公路场景中的应用,本文提出了一种基于车辆轨迹预测的预测性碰撞风险评估方法。首先,将车辆轨迹预测建模为LSTM编码器-解码器框架的序列生成任务。采用卷积社交池化(CSP)和图注意力网络(GAN)来提取局部空间车辆交互和远程空间车辆交互。然后,基于OV的预测轨迹和AV的候选轨迹计算两个基本风险指标:时间到碰撞(TTC)和最小距离裕度(MDM)。因此,构建了一个时间连续的风险函数,其中包括时间和空间的风险指标。最后,使用两个公共的高速公路数据集验证了车辆轨迹预测模型CSP-GAN-LSTM。定量结果表明,所提出的CSP-GAN-LSTM模型在位置预测精度方面优于现有的最先进方法。此外,典型高速公路场景的模拟结果进一步验证了所提出的预测性碰撞风险评估方法的可行性和有效性。

0
下载
关闭预览

相关内容

GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图神经网络综述:方法及应用 | Deep Reading
AI100
36+阅读 · 2019年3月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员