The non-destructive estimation of doping concentrations in semiconductor devices is of paramount importance for many applications ranging from crystal growth, the recent redefinition of the 1kg to defect, and inhomogeneity detection. A number of technologies (such as LBIC, EBIC and LPS) have been developed which allow the detection of doping variations via photovoltaic effects. The idea is to illuminate the sample at several positions and detect the resulting voltage drop or current at the contacts. We model a general class of such photovoltaic technologies by ill-posed global and local inverse problems based on a drift-diffusion system that describes charge transport in a self-consistent electrical field. The doping profile is included as a parametric field. To numerically solve a physically relevant local inverse problem, we present three different data-driven approaches, based on least squares, multilayer perceptrons, and residual neural networks. Our data-driven methods reconstruct the doping profile for a given spatially varying voltage signal induced by a laser scan along the sample's surface. The methods are trained on synthetic data sets (pairs of discrete doping profiles and corresponding photovoltage signals at different illumination positions) which are generated by efficient physics-preserving finite volume solutions of the forward problem. While the linear least square method yields an average absolute $\ell^\infty$ error around $10\%$, the nonlinear networks roughly halve this error to $5\%$, respectively. Finally, we optimize the relevant hyperparameters and test the robustness of our approach with respect to noise.


翻译:非破坏性地估计半导体器件中的掺杂浓度对于许多应用至关重要,例如晶体生长、最近对1千克定义的缺陷和不均匀性检测。已经开发了许多技术(如LBIC,EBIC和LPS),通过光伏效应来检测掺杂变化。其思想是在几个位置照明样品,并检测接触处的电压降或电流。我们通过描述自洽电场中的电荷输运的漂移扩散系统,将一般类的光伏技术建模为基于全局和局部不适定反问题。掺杂剖面被包含在参数场中。为了数值求解具有物理相关的局部反问题,我们提出了三种不同的数据驱动方法,基于最小二乘、多层感知器和残差神经网络。我们的数据驱动方法通过激光扫描样品表面时产生的空间变化的电压信号,重建给定的掺杂剖面。这些方法是基于由前向问题的高效保持物理性质的有限体积求解生成的合成数据集(离散掺杂剖面和对应的不同照明位置的光电压信号对)。而线性最小二乘方法的平均绝对$\ell^{\infty}$误差约为 $10\%$,非线性网络将其减半,约为 $5\%$。最后,我们优化相关超参数并测试了该方法对噪声的稳健性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员