Next generation communications demand for better spectrum management, lower latency, and guaranteed quality-of-service (QoS). Recently, Artificial intelligence (AI) has been widely introduced to advance these aspects in next generation wireless systems. However, such AI applications suffer from limited training data, low robustness, and poor generalization capabilities. To address these issues, a model-driven deep unfolding (DU) algorithm is introduced in this paper to bridge the gap between traditional model-driven communication algorithms and data-driven deep learning. Focusing on the QoS-aware rate-splitting multiple access (RSMA) resource allocation problem in multi-user communications, a conventional fractional programming (FP) algorithm is first applied as a benchmark. The solution is then refined by the application of projection gradient descent (PGD). DU is employed to further speed up convergence procedure, hence improving the efficiency of PGD. Moreover, the feasibility of results is guaranteed by designing a low-complexity projection based on scale factors, plus adding violation control mechanisms into the loss function that minimizes error rates. Finally, we provide a detailed analysis of the computational complexity and analysis design of the proposed DU algorithm. Extensive simulations are conducted and the results demonstrate that the proposed DU algorithm can reach the optimal communication efficiency with a mere $0.024\%$ violation rate for 4 layers DU. The DU algorithm also exhibits robustness in out-of-distribution tests and can be effectively trained with as few as 50 samples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员