We extend an adaptive partially matrix-free Hierarchically Semi-Separable (HSS) matrix construction algorithm by Gorman et al. [SIAM J. Sci. Comput. 41(5), 2019] which uses Gaussian sketching operators to a broader class of Johnson--Lindenstrauss (JL) sketching operators. We present theoretical work which justifies this extension. In particular, we extend the earlier concentration bounds to all JL sketching operators and examine this bound for specific classes of such operators including the original Gaussian sketching operators, subsampled randomized Hadamard transform (SRHT) and the sparse Johnson--Lindenstrauss transform (SJLT). We discuss the implementation details of applying SJLT efficiently and demonstrate experimentally that using SJLT instead of Gaussian sketching operators leads to 1.5--2.5x speedups of the HSS construction implementation in the STRUMPACK C++ library. The generalized algorithm allows users to select their own JL sketching operators with theoretical lower bounds on the size of the operators which may lead to faster run time with similar HSS construction accuracy.


翻译:我们将戈尔曼等人[SIAM J. Sci. Comput. 41(5), 2019] 的适应性部分无矩阵半半可分离(HSS)矩阵建设算法推广到更广大的约翰逊-伦登斯特拉斯(JL)绘图操作员类别。我们介绍了为这一扩展提供理由的理论工作。我们将早期的浓度界限扩展至所有JL草图操作员,并检查这些操作员的特定类别,包括原高斯画家、次级抽样随机哈达马德变换(SRHT)和稀疏的约翰逊-伦斯特劳斯变换(SJLT)等。我们讨论了高效应用SJLT的实施细节,并实验性地表明,使用SJLT而不是高斯素描画操作员可导致在STRUMPACK C++图书馆实施HSS的HSS加速速度1.5-2.5x。通用算法允许用户选择自己的JL绘图操作员,在操作员的操作员规模上理论范围较低,可能会以类似HSS的精确度加速运行。

0
下载
关闭预览

相关内容

专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员