Multilayer neural networks have achieved superhuman performance in many artificial intelligence applications. However, their black-box nature obscures the underlying mechanism for transforming input data into labels throughout all layers, thus hindering architecture design for new tasks and interpretation for high-stakes decision makings. We addressed this problem by introducing a precise law that governs how real-world deep neural networks separate data according to their class membership from the bottom layers to the top layers in classification problems. This law shows that each layer roughly improves a certain measure of data separation by an \textit{equal} multiplicative factor. This law manifests in modern architectures such as AlexNet, VGGNet, and ResNet in the late phase of training. This law together with the perspective of data separation offers practical guidelines for designing network architectures, improving model robustness and out-of-sample performance during training, as well as interpreting deep learning predictions.


翻译:多层神经网络在许多人工智能应用中取得了超人性性能。然而,它们的黑箱性质掩盖了将输入数据转换成所有层次标签的基本机制,从而阻碍了新任务的设计以及高层决策解释。我们通过引入精确的法律来解决这个问题,该法律规范了真实世界深层神经网络如何根据分类问题中从低层到顶层的类别成员情况将数据区分开来。这一法律表明,每一层通过一个多复制性因素大致改进了某种程度的数据分离。这一法律在培训的后期阶段表现在亚历克斯网、VGGNet和ResNet等现代结构中。这一法律与数据分离的观点一起为设计网络结构、提高模型的稳健性和在培训过程中的超模化性能以及解释深度学习预测提供了实用的指导方针。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Arxiv
37+阅读 · 2021年8月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员