Wind turbine power curve models translate ambient conditions into turbine power output. They are essential for energy yield prediction and turbine performance monitoring. In recent years, data-driven machine learning methods have outperformed parametric, physics-informed approaches. However, they are often criticised for being opaque "black boxes" which raises concerns regarding their robustness in non-stationary environments, such as faced by wind turbines. We, therefore, introduce an explainable artificial intelligence (XAI) framework to investigate and validate strategies learned by data-driven power curve models from operational SCADA data. It combines domain-specific considerations with Shapley Values and the latest findings from XAI for regression. Our results suggest, that learned strategies can be better indicators for model robustness than validation or test set errors. Moreover, we observe that highly complex, state-of-the-art ML models are prone to learn physically implausible strategies. Consequently, we compare several measures to ensure physically reasonable model behaviour. Lastly, we propose the utilization of XAI in the context of wind turbine performance monitoring, by disentangling environmental and technical effects that cause deviations from an expected turbine output. We hope, our work can guide domain experts towards training and selecting more transparent and robust data-driven wind turbine power curve models.


翻译:风力涡轮机功率曲线模型将环境条件转化成涡轮机功率输出,是能量产量预测和涡轮机性能监测的关键。近年来,数据驱动的机器学习方法已经超越了参数和物理驱动方法。然而,由于它们往往是不透明的“黑盒子”,因此引起了对其在非稳态环境下(例如风力涡轮机所面临的环境)的稳健性的担忧。因此,我们介绍了一种可解释的人工智能(XAI)框架,来研究和验证从操作SCADA数据中学习到的数据驱动功率曲线模型的策略。它将特定领域的考虑因素进行了结合,并采用了Shapley Values和最新的XAI回归方法。我们的研究结果表明,学习到的策略可以更好地指示模型的稳健性,而不是基于验证或测试集的误差。此外,我们观察到,高度复杂的、最先进的机器学习模型容易学习到不符合物理条件的策略。因此,我们比较了几种措施,以确保物理上合理的模型行为。最后,我们提出了在风力涡轮机性能监测的背景下利用XAI的方法,通过分离导致涡轮机输出与期望值偏差的环境和技术效应。我们希望我们的工作能指导领域专家培训和选择更透明和稳健的数据驱动风力涡轮机功率曲线模型。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
28+阅读 · 2022年12月20日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员