Sparse sensor networks in weather and ocean modeling observe only a small fraction of the system state, which destabilizes standard nudging-based data assimilation. We introduce Interpolated Discrepancy Data Assimilation (IDDA), which modifies how discrepancies enter the governing equations. Rather than adding observations as a forcing term alone, IDDA also adjusts the nonlinear operator using interpolated observational information. This structural change suppresses error amplification when nonlinear effects dominate. We prove exponential convergence under explicit conditions linking error decay to observation spacing, nudging strength, and diffusion coefficient. The key requirement establishes bounds on nudging strength relative to observation spacing and diffusion, giving practitioners a clear operating window. When observations resolve the relevant scales, error decays at a user-specified rate. Critically, the error bound scales with the square of observation spacing rather than through hard-to-estimate nonlinear growth rates. We validate IDDA on Burgers flow, Kuramoto-Sivashinsky dynamics, and two-dimensional Navier-Stokes turbulence. Across these tests, IDDA reaches target accuracy faster than standard interpolated nudging, remains stable in chaotic regimes, avoids non-monotone transients, and requires minimal parameter tuning. Because IDDA uses standard explicit time integration, it fits readily into existing simulation pipelines without specialized solvers. These properties make IDDA a practical upgrade for operational systems constrained by sparse sensor coverage.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员