Model discrepancy (the difference between model predictions and reality) is ubiquitous in computational models for physical systems. It is common to derive partial differential equations (PDEs) from first principles physics, but make simplifying assumptions to produce tractable expressions for the governing equations or closure models. These PDEs are then used for analysis and design to achieve desirable performance. The end goal in many such cases is solving a PDE-constrained optimization (PDECO) problem. This article considers the sensitivity of PDECO problems with respect to model discrepancy. We introduce a general representation of discrepancy and apply post-optimality sensitivity analysis to derive an expression for the sensitivity of the optimal solution with respect to it. An efficient algorithm is presented which combines the PDE discretization, post-optimality sensitivity operator, adjoint-based derivatives, and a randomized generalized singular value decomposition to enable scalable computation of the sensitivity of the optimal solution with respect to model discrepancy. Kronecker product structure in the underlying linear algebra and infrastructure investment in PDECO is exploited to yield a general purpose algorithm which is computationally efficient and portable across applications. Known physics and problem specific characteristics of discrepancy are imposed softly through user specified weighting matrices. We demonstrate our proposed framework on two nonlinear PDECO problems to highlight its computational efficiency and rich insight.


翻译:模型差异(模型预测与现实之间的差异)在物理系统的计算模型中普遍存在,从物理物理第一原理中得出部分差异方程(PDEs)是常见的,但简化假设以产生治理方程或封闭模型的可移动表达式。然后,这些PDE用于分析和设计,以达到理想的性能。在许多情况下,最终目标是解决PDE限制优化(PDEECO)问题。本条考虑了PDDECO问题在模型差异方面的敏感性。我们引入了差异的一般代表,并应用了最佳度后敏感度分析,以得出最佳解决方案敏感度的表达方式。介绍了一种高效算法,将PDE分解、后优化灵敏度灵敏度灵敏度操作操作器、联合衍生器和随机通用通用单一值分解组合结合起来,以便能够在模型差异方面对最佳解决方案的敏感性进行可缩放的计算。在PDECOE投资中,Kronecker产品结构被用于生成一种通用目的算法,该算出高效度和可移动性精确度解决方案。我们提出的系统物理学和移动式计算模型中,通过两个具体分析模型显示系统压强度框架的精确度。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月18日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
22+阅读 · 2022年2月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员